JAKA SDK Quick Start - EN

1. Documentation

JAKA SDK is an efficient toolkit designed to help developers easily interact with JAKA
robots. SDK provides a set of interfaces to support device connection, control, data
transmission and other functions. Through this guide, you will be able to build your own
application based on the SDK provided by JAKA in a short time and realize basic

interaction with JAKA robots.

2. Get JAKA SDK

The JAKA SDK software package can be downloaded from the JAKA official website. The
English version can be found on the English official website

https://www.jakarobotics.com/ , click [Resources] -> [Download] -> [Technical

Information] -> [Secondary Development] to view the latest and historical versions.

JAKA Y f in & JAKACobots Industries Applications ~ Resources Blog ContactUs @@English Q

Software

3D Models-STEP

3D Models-SLD

3D Models-URDF

2D Drawings I
SDKV2.1.11 JAKA TCP Protocol ‘

Secondary Development
ROS1V22 RoS2 is developing

Certificates

screenrec

3. Writing user programs

To help users quickly build their first application on different platforms, this article uses
three examples to illustrate how to use different compilation tools to create applications

on Windows and Linux platforms:

1) Create C# applications using Microsoft Visual Studio on Windows;

2) Use CMake to create C++ applications on Linux;

1/25

https://www.jakarobotics.com/

3) Use Qt Creator to create Qt applications on Linux.

3.1 Creating C# Applications with Visual Studio on Windows

3.1.1 Compilation environment installation

Users need to download and install the Microsoft Visual Studio programming platform
software. Please install it according to the online resources. The following description
assumes that the reader has installed the software. During the deployment of the C#
development environment, you may be required to update the .NET framework. Please
deploy it according to the requirements (the .NET framework for this project is .NET6.0

when it runs normally).

3.1.2 Create New Project

Open the software and click File->New->Project in the upper left corner, as shown in the

figure below. In this example, we choose to create a form application.

” File | Edit View Git Project Build Debug
P Mew] roj Ctrl+Shift+N
O pen k

Ctrl+N

Project From Existing Code...

Ctrl+S

Ctrl+Shift+5

Account Settings...
Recent Files
Recent F'rlj_iE-EtS and Solutions

Exit Alt+F4

2/25

Create a new project
Recent project templates

] Windows Forms App (NET Framework)
B Comole fpp

B Conscle App

ary for NET WEF Applications

Click Next. If you need a cross-platform application, it is recommended to select Windows

Form App; if it only runs on Windows, you can select Windows Forms App (.Net

Framework). After further setting the project name and storage location, click Next until
the project is created.

Configure your new project

Windows Forms App ¢ Windows Deskiop
Project name

VinformsApp1

3.1.3 Compile and link environment configuration

After decompressing the SDK software package downloaded from the JAKA official
website, you can see the file directory as follows.

sdk-v2-1-11 » v O | Esdk-v2-1-11 RIEE »

BR BB Zemy i

doc 2024/05/0617:58 ik

SDK2.1.11 2024/05/06 10:32 itk
[changelog 2024/05/06 10:13 i 4KB
[5 commonly used Microsoft runtime li... 2024/06/20 17:24 e FAfERE 79,250 KB
| readme_EN.txt 2024/05/06 18:08 AR 3KB

For Windows C# application development, you can find the include (containing header
files) and x64 (containing library files under Windows 64-bit system) directories in the

Windows\csharp directory.

sdk-v2-1-11 > SDK2.1.11 > Windows > csharp > v O | & csharp iR »r
SR 1ER R sl K
include 2024/05/06 10:31 pra=s
x64 2024/05/06 10:31 e

Enter the newly created project, click Add--->Existing Item in the right sidebar, and add
the two header files in the include folder: jakaAPl.cs and jkType.cs to the project.

4/25

WinFormDemo

g components

olution Exp

A

olution "WinFormDemo' (1 of 1 pr]
WinFormDemo

4] App.config

4 & Forml.cs
4 T Forml1.D
*2 Form1

C# Program.cs

olution

-

Ln:9 Ch:6 SPC CRLF

‘" Add to Source Control =

5/25

‘WinFormDemo Signin R,

Solution

plorer View
Ctrl+Shift+A
Shift+Alt+A

with Project

Alt+Enter

-

Ln:1 Ch:1 SPC CRLF

Put the C# shared library file in the SDK package into the main program directory of the
project, usually in the bin directory.

~

£ fEREEE E=5icl) o

24/11/6 16:17

W] WinFormDemo.exe

8 KB

20

[] WinFarmDema.exe.config 2024 3 CONFIG 305 1 KB
& WinFormDemo.pdb 2024 7 Program Debug..

[4] jakaaPldll 2024 st =

£ jakaAPl.exp 2024, Exports Library ...

B jakaAPLlib 2024 Object File Library 101 KB

Add the following two lines of code in the user program so that the types and methods
defined in the JAKA SDK can be used in subsequent codes.

using jkType;

using jakaApi;

6/25

- “gRobotTeach.Teach

ng ikType;
jakadpi;
System.Drawing;

RobotTeach

textBox17.Text += i Format("{8}\r\n", info);

con()

button28.BackColor = Color
button28.Enabled
button28.Text = "conr
login =

3.1.4 Writing an application

After creating the program, you can develop the interface and corresponding functions
according to your needs. After completing code editing, click [Build]->[Build Solution] to
compile and generate an executable program. Finally, click the Start button on the toolbar

to execute or debug the program.

The example provides a demonstration program for robot teaching, which includes the
following functions: connection, power-on and enable, joint space motion control,
Cartesian space posture control, etc. Customers can refer to the sample code for specific

implementation.

3.2 Creating C++ Applications with CMake on Linux

3.2.1 Download and install CMake tools

It is recommended to download the installation package for the corresponding platform

from the official website [Cmake official website](https://cmake.org/). This example uses

Cmake version 3.7.2, and it is recommended to use this version or above. (For specific
installation operations, please read the online resources, download and install them

yourself) The following instructions assume that the reader has completed this operation.

After the download is complete, enter cmake --version in the terminal. If the following

content is displayed, it means the installation is successful.

7/25

https://cmake.org/

N2 R =E-|VA
jakauser@ZuCAB2001:~$ cmake --version
cmake version 3.7.2

CMake suite maintained and supported by Kitware (kitware.com/cmake).

3.2.2 Download and install Visual Studio Code

Users can go to the Visual Studio Code official website

https://code.visualstudio.com/Download) to find the software installation package and

download and install it. After VS Code is installed, please install the CMake extension in

the Visual Studio Code extension.

3.2.3 Write the project framework and configure CMake

Create a new project folder CmakeSDKDemo under Linux and create the following files,
where c&c++ are resource files under Linux in the SDK package provided by Jieka,
including header files inc and dynamic library files. main.cpp is the main file of the project,
and CMakelLists.txt is the Cmake configuration file. Please pay attention to the

capitalization.

CmakeSDKDemo - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER

~ OFEN EDITORS

AKESDKDEMO

Next, use Cmake to write and run a simple hello world program. First, enter the following
in CMakelLists.txt.

V EHIRE

cmake_minimum_required(VERSION 3.5)
project(JAKADemo)

add_executable(hello main.cpp)

8/25

https://code.visualstudio.com/Download

e cmake_minimum_required: Specify the minimum version requirement of CMake;
e project: Define the project name;
e add_executable: Add an executable target, the first parameter is the target name, the

second parameter is the source file list.

Note: This project uses the gcc compiler by default, as shown below. Please configure the

C++ compiler by yourself.

Write the main program main.cpp and enter the following code.

V' main.cpp D EFIRE
#include <string>

#include <iostream>

int main(){
std::cout << "hello world" << std::endl;

After that, we configure CMake. Enter cmake . in the terminal to configure the entire
project. Then the configuration files required for building will be generated under the

project file.

cmake .
4l

- works

ser/Desktop/CmakeSDKDemo

9/25

After the generation is complete, enter the make command in the terminal to build and
compile the executable program. A hello executable program will be generated in the

current directory.

Scanning dependencies of target hello
[50%]

[100%]
[106%] Built target hello

Enter the ./hello command in the terminal. Execute the program and the result is as

follows.

il
LA

hello world

At this point, running a simple helloworld program with CMake is complete.

3.2.4 Link JAKA SDK library

Enter the following content in the CMakeLists.txt file. Please refer to the comments for the

function of each line of configuration.

v CMakelLists.txt D &5
cmake_minimum_required(VERSION 3.7.2) # Minimum CMake Version
project(sdk test VERSION 1.0) # Project Definition

C++ Standard
set (CMAKE_CXX_STANDARD 11)
set (CMAKE_CXX_STANDARD_REQUIRED true)

Source Directory Information
message (${CMAKE_SOURCE_DIR})

Executable Creation
add_executable(demo main.cpp)

Set the header file path of the SDK included in the project

target_include_directories(demo PUBLIC
${CMAKE_SOURCE_DIR}/c&c++/inc_of_c++)

Set the SDK dynamic library link path

target_link_libraries(demo ${CMAKE_SOURCE_DIR}/c&c++/x86 64-linux-
gnu/shared/libjakaAPI.so pthread)

10/ 25

Write the main.cpp file and implement the control sample code through the SDK as
follows: The functions implemented in this example are to print the SDK version
information, obtain the current TCP position, and move the robot with a certain distance

along the y-axis.

v main.cpp SIS

#include <string>

#include <vector>

#include <iostream>

#include <chrono>

#include "JAKAZuRobot.h"
#include <thread>

int main(int argc, char** argv)

{

JAKAZuRobot demo;

demo.login in("192.168.164.222");

//sleep(2);

demo.power_on();

//sleep(2)

demo.enable_robot();

//sleep(2);

CartesianPose tcp pos;

int ret;

char ver[100];

demo.get_tcp_position(&tcp_pos);

demo.get sdk _version(ver);

std::cout << "SDK version is :" << ver << std::endl;

std::cout << "tcp_pos is :\n x: " << tcp_pos.tran.x << "y: " <<
tcp _pos.tran.y << "z: " << tcp_pos.tran.z << std::endl;

std::cout << "tcp_pos is :\n rx: " << tcp pos.rpy.rx << "ry: " <«

tcp_pos.rpy.ry << "rz: << tcp_pos.rpy.rz << std::endl;

auto now = std::chrono::system_clock: :now().time_since_epoch();

auto ms = std::chrono::duration_cast<std::chrono::milliseconds>
(now).count();

std::cout << "Current s: " << std::fixed << ((double)ms) / 1000.0f
<< std::endl;

tcp_pos.tran.y = tcp_pos.tran.y + 60.0;

ret = demo.linear move(&tcp pos, ABS, TRUE, 10, 10, 1, NULL);

std::cout << "ret==" << ret << std::endl;

1n/25

n

std::cout << "linear_move finish! << std::endl;

now = std::chrono::system clock::now().time_since_epoch();

return 9;

After all the above are prepared, configure and build the entire project through cmake. It is
recommended to create a new build directory under the project root directory to store the

intermediate files generated by the build to avoid complex file contents.

CMakelLists.txt - CmakeSDKDemo - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER main.cpf
Chv

~ OPEN EDITORS

JARD 11)
DARD_REQUIRED

Je&c+/inc_of _c++)

(|demo /& -linux 5 1ibjakaAPI.so pthread)

Then, enter the build directory with cd build and run the command cmake .. to build the
entire project. The system will automatically put the generated intermediate files into the
build directory. (Note that it is cmake .., which represents the parent directory of the

directory where CMakelLists.txt is located).

CMakeLists.txt - CmakeSDKDemo - Visual Studio Code

File Edit Selection View Go Run Terminal Help

Then enter make in the terminal to build and compile the executable program.

12 /25

¢ make

Linking (
=] Built ta

After the above is completed, a demo executable program will be generated in the build

directory. Readers can run the C++ program by running ./demo in the terminal.

:1ibadd jakaAPI version: V2.1.13stable linux
-294.055z: 1609.65

2.59831

Through the above steps, the reader's C++ program is written and can be run successfully.

3.3 Creating Qt Applications with Qt Creator on Linux

3.3.1 Download and install Qt Creator

Users can go to the Qt Group official website (https://www.qgt.io/download-dev) to find

the software installation package and download and install it. After Qt Creator is installed,
start Qt Creator and the interface is as shown below.

Activities @@ Qt Creator ~

Qt Creator x

File Edit View Eulld Debug Analyze Tools Window Help

Sessions £ Manage Projects + New & Open

Examples o
Tutorials

Marketplace

New to Qt?

Get Started Now

L Geran

X Gt accoun t

M Onie Communty
R\ sigs

@ ser cuoe

Waould you like to take a quick Ul tour? This tour highlights important user interface elements and shows how they are used. To take the tour later, select Help > Ul Tour. Take Ul Tour || Do Not Show Again = X

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results = =

13/ 25

https://www.qt.io/download-dev

After Qt is installed, you need to further complete the Qt build configuration. Open Qt
Creator, go to [Tools] -> [Options], and select the Kits tab in the pop-up dialog box.

— In the Qt Versions section, make sure your installed Qt version is listed. If no version is

shown, the user needs to add it manually.

Qt Creator *

Options — Gt Creator x

ﬁ File Kits
m Kits | QtVersions Compilers ~Debuggers CMake

@ [J Environment = S _
@ B Text Editor Auto-detected

~ Manual
M. FakeVim Qt5.7.1 (qt5) fusrlib/x86_64-linux-gnu/qt5/binfqmake

@ @ Help Link with Q...
{} C++

-4 QtQuick

2 Build & Run

@ Qbs

Debugger
IE /" Designer

@ Python

[E Analyzer

E Version Centrol
Co Devices

& ceton [B Code Pasting

2 aac
M cnine
A ploxs
@ user

&P Language Client

T& Testing
Register documentation: | Highest Version Only ~

o Apply | @ Cancel FOK

5, Type to locate (Ctrl.. 1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results

— Confirm the compiler configuration in the Compliers section. Usually, Qt Creator will
automatically recognize the installed compilers, but if not, the user can configure them

manually.

Qt Creator *

Options — Gt Creator x

m Filte: Kits
B - oo | comvien | Debuggers | e

@ [Environment Name Type Add

B Text Editor - Auto-detected
- C

K. FakeVim GCC (C, x86 64bit at /usr/binfgec) Gec
Markel | g Help Clang (€, x86 64bit at foptiqtcreator-5.0.3/libexec/qtcreator/clang/bin/clang) Clang
T Remove All
{} C++ GCC (C++, x86 64bit at fusr/bin/g++) GCC
~ Manual
-4 QtQuick c

2 Build & Run G

Re-detect

Auto-detection Settings.

@ Qbs

Debugger
IE /" Designer

@ Python

[E Analyzer

B Version Centrol
C3 Devices

& ceton [B Code Pasting

2 aac
M cnine
A ploxs
@ user

&P Language Client
T& Testing

o Apply | @ Cancel FOoK

5, Type to locate (Ctrl.. 1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results

Once Qt and the compiler are configured, go to the Kits tab and click the Add button in

the lower left corner to create a new Kit or select an existing Kit.

14 /25

Options — Qt Creator x
Proje- [RU Kits
_ Kits | QtVersions Compilers Debuggers —CMake
: [Environment Name Add r
B Text Editor Auto-detected
W) - Manual Clone
M. FakeVim i Gt-5.7.1 {defautt) r—
Make| @ Help
{} Co+
Settings Filter...
4 Qt Quick
Default Settings Filter...
NEWES | . 5,14 5 run
Leam how!
M’.".M @ Qbs Qt-5.7.1 =2
oplee) i Debugger File system name:
GetSt ° Designer Device type: Desktop z
4% Python Device: Local PC (default for Desktop) - || Manage...
[E Analyzer Build device: Local PC (default for Desktop) ~ | Manage...
B Version Control Sysroot: Browse...
W Getg) | O Devices C | GEC (C, x86 B4bit at justibin/gec) -
Compiler: Manage...
L oA G Code Pasting Ca+: | GCC (C++, xB6 B4bit at fusr/bin/g++) -
M onine & Language Client Environment: No changes to apply. Change..
T& Testing .
3\ Blogs Debugger: System GDB at Jusr/bin/gdb - | | Manage...
olhﬂ' Ok o O E T A LakE) - na =
o Apply || @ Cancel POk

‘Would you like to take a quick Ul tour? This tour highlights important user interface elements and shows how they are used. To take the tour later, select Help > Ul Tour.

£, Type to locate (Ctrl... 1 Issues 2 Search Results 3 Application Output 4 Compile Output

Debugger Console 8 Test Results

3.3.2 Create a Qt Application

Take Ul Tour | Do Not Show Again | X

Run Qt Creator and click [File] -> [New File or Project ...] on the menu bar to create a new

Qt application. In the following example, select Application (Qt) -> Qt Console Application,

i.e. Qt console application, and then follow the instructions to configure it.

at 16:04

Qt Creator

File Edit View EBuld Debug Analyze Tools Window Help

Sesslons New File or Project — Qt Creator

Examples 1 defay Choose a template: All Templates

Application (Qt Quick) implementation.

Projects E . .
e eT— - Qt Widgets Application Creates a project containing a single
Tutosials ST EAEY main.cpp file with a stub

—_— Qt Console Application
Application (Qt for Python)
Marketplace u:fa P Preselects a desktop Qi for building
" the application if available.
Other Project
Non-Qt Project Supported Platforms:
New to Qt? Import Project « Desktop
Learn howrto develop your Files and Classes
avm applications and CIC++
explore Ot Creator
Maodeling
Get Started Now ar
— GLSL
General
Java
Python
& Gerar @ Cancel | |@Choose...

L otaceount
M Gnine communty
I\ Blogs

@ User Guige

£ 19

1lssues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results +

After configuring the project name and storage directory, you need to select the Build

System. Qt supports multiple build systems. In this example, gmake is selected.

15/ 25

! r y X
Sessions Q, Qt Console Application — Qt Creator ®

Examples D cefact feu Define Build System
Location
[Tworts | & BudSystem - uidsystern: [
B CMake
[Marketplace | abs
New to Qt?

Lesrn how to develop your
own applications and
exploee it Creator

Get Started Now

. <Back || Next> || Cancel
GetQt]

L ctaccount
M Goine Communty

N siogs

@ User Guice

1lssues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results = =

On the Kits selection interface, select the previously configured Kit, click Next and finally

complete the project creation.

File Edit View Eulld Debug Analyze Tools Window Help

Examples 10 default (o Kit Selection
Location

Tuterials Build System The following kits can be used for project SDKQtDema:

Translation Type to filter kits by name.

 Kits

Marketplace Select all kits

v B Qt-57.1 Details -

New to Qt?
Learn how ta develop your

awn applications and
explore Ot Creator

Get Started Now

< Back Next > Cancel
¥ Gerar = —

L o aeesum
M Gnine commanty
N elogs

@ User Guie

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results = =

After the project is created, the initial interface is as follows.

16 / 25

main.cpp - Gt Creator x

File Edit View Build Debug Analyze Tools Window Help
Projects Tk < : x <Select Symbol>
PPN - (s SDKQtDemo
HHH
f SDKQtDemo.pro ~ int madn(int arge, ch orgv))
- [Sources {

2 Unix {LF) ¢ [3 Line: 9, Col: 1 Bt

#include <QCoreApplication>

QCoreApplication a(arge, argv);

eturn a.exec();
}

B Application Output
SDKQtDemo 3

1lssues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 TestResults =

3.3.3 Link Configuration for SDK
Add the header files and library files in the downloaded JAKA SDK to the project. This

example is a Linux system, so copy the two folders inc_of_c++ and x86_64-linux-gnu in
the JAKA SDK folder to the project directory.

v sdk-v2-1-11 » SDK2.1.11 > Linux > c&c++ > v O Eclc++ HiEE r
A B e a8 sem Hh
inc of ¢ 2024/05/06 10:31 prgla=
| inc of c++) 2024/11/08 17:22 g3
| = x86_64-linux-gnu | 2024/05/06 10:31 TR

< > | 4 frHome SDKQtDemo * Q== x
© Recent ﬁ \ N
=
@ Home b
[Documents =
main cpp SOKQIDemopro SDKGtDemoprouser [N EATILR 0T

% Downloads

@ Trash

Double-click the project configuration file SDKQtDemo.pro in Qt Creator to add the
header files and library files required to use the JAKA SDK to the project. The
configuration added in this example is as follows:

1) Add the configuration line INCLUDEPATH += inc_of c++ to add the header file
directory to the project;

2) Add the configuration line LIBS += -L$$PWD/x86_64-linux-gnu/shared -ljakaAPI to
add the libjakaAPl.so file to the project. $(PWD)/x86_64-linux-gnu/shared specifies the
directory where the libjakaAPl.so file is located, and jakaAPI is the library name (i.e.,
libjakaAPl.s0).

17 /25

Activities [Qt Creator

SDKQtDemo.pro @ SDKQtDemo - Qt Creator x

File Edit View Build Debug Analyze Tools Window Help

Projects 3T =28 E B SDKGtDemo.pro Unix (LF)
Fa SDKQtDemo QT -= gui

' el nsine CONFIG += co+ll console
= [2 Sources CONFIG -= app_bundle
&4 main.cpp

pile if

You can make your code fail to uses deprecated APIs.

® disables all the APIs deprecated before Qr 6.0.0

LIBS += -L§4PWD/x86_64-Linux-gnu/shared -1jakaapl

SOURCES &=
main. cpp

Default rules for deployment.

gnx: target.path = /tmp/$${TARGET}/bin

else: unix:landroid: target.path = fopt/$${TARGET}/bin
tisEmpty(target.path): INSTALLS += target

Open Documents E
JAKAZuRoboth B Application Output

mamn.cpp SDKQtDemo 3 = SDKGtDemo 3
SDKQtDemo. pro
161411162 Debugging /home/jakauser/build. _5_T_1-Debug.
SDK version 45 :1ibadd JakauPI_versisn: v2.1.1lstable ldnux
tep_pos s @

x: 436.04y: 11.21z: 33.85
tep_pos s :
Fx: 1.5708ry: -BrE: B

Current s: 1731141681.227000

ret==-50

inear_sove finisht

16141158 Debugging of /home/jakauser/build-SOKQtDeno-Qt_S_7_1-Debug/SDKQtDemo has finished with exit code 8.

1lssues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results =

This completes the environment setup and configuration required for the Qt program to
use the JAKA SDK.

3.3.4 Write application and use SDK
You can add #include "JAKAZuRobot.h" to the program and import the JAKA SDK header

file to call the relevant interface. This example writes the following code for reference.
Note: The IP address used in the example is the robot IP address, and the user needs to

adjust it according to the situation.

V' mian.cpp SHIHE

#include <QCoreApplication>
#include "JAKAZuRobot.h"
#include <string>

#include <vector>

#include <iostream>
#include <chrono>

#include <thread>

int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);

JAKAZuRobot demo;

demo.login in("192.168.1.100");

//sleep(2);
demo.power_on();
//sleep(2)
demo.enable_robot();
//sleep(2);

CartesianPose tcp pos;

18 /25

int

char
demo
demo

std:
std:

ret;

ver[100];
.get_tcp_position(&tcp_pos);
.get_sdk_version(ver);

:cout << "SDK version is :

:cout << "tcp_pos is :\n x:

<< ver << std::endl;

<< tcp_pos.tran.y << "z: <<

<< tcp_pos.tran.x << "y:

tcp_pos.tran.z << std::endl;

std:
<< tcp_p
auto
auto
std:

tep_

ret
std:
std:
now

<< tcp_pos.rpy.rx << "ry:

:cout << "tcp_pos is :\n rx: << tcp_pos.rpy.ry << "rz:
os.rpy.rz << std::endl;

now = std::chrono::system_clock: :now().time_since_epoch();

ms = std::chrono::duration_cast<std::chrono::milliseconds>(now).count();

:cout << "Current s: " << std::fixed << ((double)ms) / 1000.0f << std::endl;
pos.tran.y = tcp_pos.tran.y + 60.0;

= demo.linear_move(&tcp pos, ABS, TRUE, 10, 10, 1, NULL);

:cout << "ret==" << ret << std::endl;

:cout << "linear_move finish! << std::endl;

= std::chrono: :system_clock: :now().time_since epoch();

return a.exec();

3.3.5 Compile and run the application

After the program is edited and saved, click the menu [Build]->[Run gmake] to generate

the configuration file required for the build. After running gmake, it will prompt successful

completion or exception (if any).

File Edit View [=TIG} Debug Analyze Tools Window Help
BUIEEY .~ Build All Projects
~ [SC

HH Deploy
Wecoma ;‘_“I %2 Rebuild

= | 4, Clean
= / Bulld Project “SDKQtDemo*
Deploy
Rebuild
" 4, Clean
Build File “main.cpp™
/* Build All Frojects for All Configurations
@ ‘f(‘ Rebuild
Help &5 Clean
/7 Build Project *SDKQtDemo” for All Configurations
R Rebuild

45 Clean

/* Build for Run Configuration “SDKGtDemo™
Run qmake
Open D

main.cpg
sokag * Run
Run Without Deployment

g N Open Build and Run Kit Selector...
[QML Preview

Export Components

LIl 2. Type to locate (Ct

Generate Compilation Database for "SDKQtDeme”

1 Issues 2 Search Results

main.cpp @ SDKQtDemo - Qt Creator x

Ctrl+Shift+B

» | <Select Symbol>

Jed file, which might lead to incorrect code completion and highlighting, for example. Show Details | | Minimize

Ctri+B
Ctri+Alt+B

B <c stdisendly

tep_pos.tran.x << Tyi " << tCP_pos.tran.y << "Zi " << tep_pos.tran.z <¢ std:iendl;

£ tep_pos.rpy.rx << tep_pos.rpy.ry << "rz: ' << tep_pos.rpy.rz << std:iendl;

5 h(};

econds>(now) .count();
) [1000.0f << stdizendl;

P Filter

Ctri+R

3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results =

Then click [Build] -> [Build All Projects] to compile the source code and link it to generate

an executable file. The Compile Output window at the bottom of Qt Creator will output the

compilation results.

19/ 25

main.cpp @ SDKQtDemo - Qt Creator x

<Select Symbol> + | Unix (LF) ¢ [F Line: 44, Col: 1

] SDKQtDemo
L& SDKQtDemo.pro
~ 2 Sources

"y: " << tcp_pos.tran.y €< "z: " << tep_pos.tran.z << std:zendl;

"ry: " << TCR_DOS.IPY.FY €€ TrZ: " << tep_pos.rpy.rz << stdiiendl;

epoch();

secands> (now) .count ()
ms) / 1600.8F << std:zendl;

Open Documents
JAKAZuRoboth

o -spec 1i

CONFIG+=debug CONFIG+=qul_debug
B SDKQIDemo.pro 87z The process "Jusr/1ib/x86 exited normally.

97: Starting: "Jusr/bin/make" ~f /home/jakauser /build-SDKQtDemo-Qt_5_7_L-Debug/Makefile amake_all

Hothing to be done for "qmake_sll’

67: The process fusr/bin/make' exited normally.

lﬁ 45:07: Starting: "/usr/bin/make" -j4

Bre € w164 -pipe -g -stdeguuesll Woll - -0.REENTRANT ~fPLC ~DQT.QHL.OSBUG -OQT.CORE.LIS -1../SDKGtemo -1. -1.../SOKQcDemo/inc.of ces ~fsysten /usr/include/xes.6é-Linux-gnu/ats ~isysten /
usr/include/x86_64-1inux-gnu/qts/QtCore ~I. ~L/usr/1ib/x86_64-11nux-gnu/ n -0 main.o main.cpp

g4+ -m64 - SOKQDemo main.o -L/home, jakauser/SDKYtDeno/x86_64-1inux-gna/shared -1jskasPT \o(scau -lp(hread

16:45:89: The process "fusr/bin/make! exited normally.

161451091 Elapsed time: 89302,

'a

1lssues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results = = 0

After successfully building, you can click the Run button on the left toolbar of Qt Creator

to start the program. The running effect of this example is as follows.

main.cpp @ SDKQtDemo - Qt Creator x

3 % | <Select Symbol> ine: 44, Col: 1 ’

- s SDKQtDemo =
& SDKQtDemo. pro IAKAZuRobot demo;

~ 2 Sources

demo. lm

< "SDK version

M << tep_pes.tran.y €< "I: " {¢ tep_pos.tran.z << stdizendl;

* << tep_pos.rpy.ry << 'rz: ' << tcp_pos.rpy.rz << std:iendl;

e
11\11e:u-d,>(rw) cou
ble)ms) / 1060.0f << st

SDKQtDemo

SDKQGtDemo 3

16:43:43: Starting /home/fakauser/build _1-Deb
SOK version ds :1ibadd JakakPI_version: V2.1. llstab'le l'mux
tep_pos 15 :

xi 436.84y: 11.21z: 33.05

tep_pos 15 :

rx: 1.5708ry: -Orz: ©

Current 3: 1731141826.145000

1 Issues 2 Search Results 3 Application Output 4 Compile Output 5 QML Debugger Console 8 Test Results = = 0

4. Instructions for deploying SDK application as
Addon

In order to facilitate some users to use SDK programming and deploy it in the controller to
replace complex graphical programming operations, this chapter deploys and runs

applications written using the Jieka SDK through Addon. Since the current Jieka Addon

20/ 25

function is to run the Python main file and use Python 2.7 by default, but the Jieka SDK is
currently compiled with Python 3 or above, there will be problems when running the
Python SDK library directly under Addon. Therefore, this document mainly explains how to
call the SDK application written in the customer's C++ language through Addon, and the

platform is the Linux system.
Therefore, the overall idea can be divided into two steps:

1) Develop user programs based on C/C++ that can run in JAKA controllers;

2) Develop an Addon that runs in the JAKA controller and eventually calls and executes

the above SDK-based user job program.

4.1 Environment Setup

During the whole process, users need to prepare two development environments to

complete the above two steps respectively:

1) SDK-based user program development environment;

2) JAKA Addon development environment.

4.1.1 Setup SDK application development environment

For this part, please refer to the process described in 3.2 Creating C++ Applications with

CMake on Linux for preparation.

4.1.2 Setup Addon development environment

First, prepare a demo developed by JAKA Addon (see the link below for download). After
decompression, there are the following directories and files. The most important ones are
the two files marked in red. Addon_Demo.py is the main Python program, which is the
entry program for the entire Addon runtime. Addon_Demo_config.ini is the Addon

configuration file, which contains some configuration items about this Addon.

For detailed introduction of Addon, please refer to the relevant page of the Jaka

Documentation Center: https://www.jaka.com/docs/guide/addOn/1.2-AboutDev.html.

=i B HEE
client 2022/4/20 20:55
| % AddOn_Demo.py 2022/5/12 17:41
|>:_'| AddOn Demo_config.ini 2022/5/9 14:45
=| readme.txt 2022/5/9 16:20
server_config.json 2022/5/9 16:47
#| server_config.py 20224512 16:57

21/ 25

https://www.jaka.com/docs/guide/addOn/1.2-AboutDev.html

4.2 Development and Deployment

The following demonstrates how to deploy the development environment of Jieka SDK
C++ under Linux. This development deployment requires the use of CMake tools. Readers
are requested to download, install and configure them by themselves. The following
explanation assumes that the reader has completed the configuration and has a certain

development foundation.

4.2.1 Write user application

The writing of user operation programs can refer to the process described in 3.2 Creating

C++ Applications with CMake on Linux to create an executable program that can run in

the robot controller environment. In this example, it is assumed that the user-developed

operation program executable file is demo.

4.2.2 Run SDK application from Python

At this point, you need to write Python code in the Addon's Python main program to call
the C++ executable program. The following are two ways for users to implement the call
(Note: the default Python running version in the controller system environment is Python
2.7).

1) Run via the subprocess module

v Addon_Demo.py SHIHE

import subprocess

import os
if name_ == '_main__':
way 1

args = ['./build/demo"]
result = subprocess.call(args) # python2
2) Run via the os module

v Addon_Demo.py EHIH3

import subprocess

import os
if name_ == '_main__':
way 2

args = ['./build/demo"']
os.system('./build/demo")

22/ 25

The above is an example of running the SDK program through the JAKA Addon
framework. ./build/demo is the path of the user-developed program executable file under
the developed Addon.

4.3 Run SDK application as Addon

After writing the Addon, the user needs to package the project into tar.gz format to form
an Addon software package. Then open the JAKA App software, You can go to [Settings]--
>[System Settings]-->[Add-on], enter the add-on management interface, upload the
Addon package to complete the installation. After the installation is complete, the user

can control the start or end of the Addon on this page.

JAKA @ @ %.:)} @ @ |||| ? bzof

b0a2
20t Real R‘ Off Settings Log Help Signal JKROBDT‘ i
Cobo T

4 rd
h.) ‘ .,&') _4—:.-.\ 4 i (?
AL p , o
o 5y cy O P
L - 1L _AE} i |
JAKA Zu® 3 JAKA Zu® & JAKA Zu 7 JAKA Zu® 12 JAKA Zu® 18
(@ Power On Robot > (@ Enable Robot >
(¢ JAKA 310 ®
Programming Manual Operation Home o Monitoring

23/ 25

%" g] ||| "? b20f .

_ bOa2
Real Flobnl‘ Log Signal JKF{DBUT‘
@ Operation Settings @ Safety Settings (P Program Settings Hardware &
o Communication
Initial Settings Network Settings Add-on Version Upgrade Systemn Backup \Q Management
el
] @
Program Name Version Description Running Port State Options
AddOn Deme 1.0 “Addon Demo" 10011 D @ ©3
™
dh_custom_cmd V1.2 IE n 10007 ® @& &
CT timer 1.0 CT@AO 10009 a b
Palletizers "-Z:a':;%"'z"ﬂ" “JAKA Palletizing process package” 10008 a & o
System_AddOn 152 System Fuction 10010 [@ 51
JAKA collision set 1.1 " EE E 10006 @ @& o

N

Select the Addon package in the local directory and wait for the file to be uploaded

successfully.

Upload AddOn file

Upgrade file: |

Use the toggle button under the Stat column to turn this Addon on or off.

24 /25

@ ré‘] |||| ? b20f

. b0a2
] Reaanb‘ Log Signal JKROBDT‘

CSueterm Catbinge ; : : : ¢(J Hardware &
@ System Settings @ Operation Settings @ Safety Settings d?; Program Settings 07 Communication

Add-on Version Upgrade System Backup User Management
e
C ® 0
Program Name Version Description Running Port State / Options
AddOn Deme 1.0 “Addon Demo" 10011 Qﬂ @ ©3
dh_custom_cmd V1.2 AEEEMIES? 10007 ® o
CT timer 1.0 CT@AO 10009 a b
V_2.1.4_multith
Palletizers - Ead;::;uzl r “JAKA Palletizing process package” 10008 () @ @
System_AddOn 1.5.2 System Fuction 10010 51
JAKA collision set 1.1 s e 10006 & e -

4.4 Precautions

1) When developing user applications based on SDK, you need to pay attention to the
system architecture of the current control cabinet. JAKA controllers based on Debian
Linux may have two configurations, x86 and x86_64. You can connect to the controller
through the JAKA App and check the controller version suffix to obtain the specific
information;

2) If the SDK application was deployed on the controller, it will share the resources with
the existing JAKA controller and other system services. Users need to plan resource
usage reasonably, including the use of CPU, memory, and disk space, to avoid
affecting the robot control system.

25/ 25

